곽진호
포스텍 수학과 명예교수
강좌 설명
우리는 몇몇 응용분야에서 선형대수의 기본 개념을 배우고 있습니다. 본 강좌의 기본 개요는 매트릭스 및 결정인자, 벡터 공간, 선형 변환, 내부 제품 공간, 대각선화, 복합 매트릭스. 허용된 경우, 매트릭스의 여러 분해를 포함한 요르단 규약 양식에 대한 기본적 실천요강입니다.
교재
Jin Ho Kwak, Fundamentals of Linear Algebra(핵심선형대수학), 제2판, 경문사, 2020
강의개요 | |
Week 1 | What is a matrix? |
Products of matrices | |
Week 2 | Systems of Linear Equations, by a matrix! |
Elementary matrices | |
Week 3 | Invertible matrices |
The Determinant is a fuction | |
Week 4 | Existence and uniqueness of the determinant fuction |
Further computing detA and Cramer's rule | |
Week 5 | Spaces |
Subspaces as Vector Spaces | |
Week 6 | Linear dependence Linear independence |
Bases and Coodinate System | |
Week 7 | Row spaes, Column spaces and Null spaces |
Linear Transformations | |
Week 8 | Change of bases |
Inner Product Spaces | |
Week 9 | Geometry on an inner product space |
Gram-Schmidt orthogonalization and Rectangular coordinate system | |
Week 10 | Orthogonal Projections, ProjU and Projection Matrix |
Orthogonal matrices are isometries | |
Week 11 | Diagonalization of Matrices |
Which matrices are diagonalizable? | |
Week 12 | Applications of the diagonalization |
Complex Vector Spaces | |
Week 13 | Hermitian, Skew-Hermitian, and Unitary matrices |
Orthogonally Diagonalizable Matrices and Unitarily Diagonalizable Matrices | |
Week 14 | Jordan Canonical Forms(JCF) |
GIVEN A, HOW TO FIND JCF J AND A CHANGE OF BASIS MATRIX Q IN THE Jordan decomposition A = QJQ-1? | |
The powers Jk and Ak Cayley-Hamilton Theorem |
포스텍 수학과 명예교수